
Bachelor Thesis

Analysing the Impact of Corrup-
tion on Innovation Performance in
European Regions
Jeremias Braendle
Date of Birth: 02.10.1999
Student ID: h11817039

Subject Area: Information Business

Studienkennzahl: J123456789

Supervisor: Johannes Wachs, PhD

Date of Submission: 30 May 2021

Department of Information Systems and Operations, Vienna University of
Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria



Contents
1 Introduction 7

2 Literature Review 8

2.1 Measuring Corruption Risk . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Perception Based Corruption Indicators . . . . . . . . 9
2.1.2 Objective Corruption Risk Indicator . . . . . . . . . . 9

2.2 Measuring Innovation Performance . . . . . . . . . . . . . . . 10
2.2.1 European Innovation Scoreboard . . . . . . . . . . . . 10
2.2.2 Patents as Measure of Innovation Outcome . . . . . . . 11
2.2.3 Technological Complexity . . . . . . . . . . . . . . . . 12

2.3 Relationship Between Corruption and Innovation Performance 12
2.3.1 Greasing the Wheels of Innovation . . . . . . . . . . . 12
2.3.2 Sanding the Wheels of Innovation . . . . . . . . . . . . 12

3 Data 13

3.1 Dependent Variables - Proxies for Innovation Performance . . 13
3.1.1 Patent Quality . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Technological Complexity . . . . . . . . . . . . . . . . 15

3.2 Proxies for Corruption . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 European Quality of Government Index (EQI) . . . . . 16
3.2.2 Red Flags in Public Procurement . . . . . . . . . . . . 16

3.3 Control Variables . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Data Processing 18

4.1 NUTS Nomenclature . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Patent Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Corruption Risk Data . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Control Variables . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Descriptive Analysis 22

5.1 Innovation Performance . . . . . . . . . . . . . . . . . . . . . 22
5.2 Corruption Risk . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Sources of Variation . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Methods 32

7 Results 34

7.1 Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2 Effect on Patent Quantity . . . . . . . . . . . . . . . . . . . . 36

7.2.1 Between Estimator . . . . . . . . . . . . . . . . . . . . 36

3



7.2.2 Within Estimator . . . . . . . . . . . . . . . . . . . . . 37
7.3 Effect on Patent Quality . . . . . . . . . . . . . . . . . . . . . 41
7.4 Effect on Technological Complexity . . . . . . . . . . . . . . . 45
7.5 Effect on Technological Composition . . . . . . . . . . . . . . 48

8 Discussion 50

9 Conclusion 53

A Summary Statistics 61

B Correlations and Maps of Control Variables 63

4



List of Figures
1 Map of Patent Applications . . . . . . . . . . . . . . . . . . . 23
2 Maps of Patent Quality . . . . . . . . . . . . . . . . . . . . . . 24
3 Maps of Technological Complexity . . . . . . . . . . . . . . . . 25
4 Correlation Matrix of Patent Variables . . . . . . . . . . . . . 26
5 Map of Single Bidding . . . . . . . . . . . . . . . . . . . . . . 27
6 Map of EQI Corruption Pillar . . . . . . . . . . . . . . . . . . 28
7 Development of Single Bidding over Time . . . . . . . . . . . . 29
8 Development of the EQI over Time . . . . . . . . . . . . . . . 29
9 Plots of Variation . . . . . . . . . . . . . . . . . . . . . . . . . 31
10 Scatterplots - Patent Quantity and Corruption Proxies . . . . 35
11 Effect of Corruption on Technological Composition . . . . . . 49
12 Correlation Matrix of Control Variables . . . . . . . . . . . . . 63
13 Map of GDP . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
14 Map of Unemployment . . . . . . . . . . . . . . . . . . . . . . 64
15 Map of Population Density . . . . . . . . . . . . . . . . . . . . 65
16 Map of Primary Sector Employment . . . . . . . . . . . . . . 65
17 Map of Tertiary Education Rate . . . . . . . . . . . . . . . . . 66
18 Map of Hightech Employment . . . . . . . . . . . . . . . . . . 66
19 Map of R&D Expenditure . . . . . . . . . . . . . . . . . . . . 67

5



List of Tables
1 Control Variables . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 NUTS Classification of Vorarlberg - Austria . . . . . . . . . . 18
3 Missing Values - Corruption Variables . . . . . . . . . . . . . . 21
4 Missing Values - Control Variables . . . . . . . . . . . . . . . 22
5 Variation Within and Between Regions . . . . . . . . . . . . . 30
6 Correlations Patenting and Corruption . . . . . . . . . . . . . 34
7 Patent Quantity - Between Estimator . . . . . . . . . . . . . . 39
8 Patent Quantity - Within Estimator . . . . . . . . . . . . . . 40
9 Patent Quality - Between Estimator . . . . . . . . . . . . . . . 43
10 Patent Quality - Within Estimator . . . . . . . . . . . . . . . 44
11 Technological Complexity - Between Estimator . . . . . . . . . 46
12 Technological Complexity - Within Estimator . . . . . . . . . 47
13 Summary Statistics - Patent Variables . . . . . . . . . . . . . 61
14 Summary Statistics - Corruption Proxies . . . . . . . . . . . . 61
15 Summary Statistics - Control Variables . . . . . . . . . . . . . 62

6



Abstract

The aim of this thesis is to analyse the relationship between corrup-
tion and innovation performance in European regions. It differentiates
itself from and adds to the existing literature by considering not only
the quantity but also the respective quality of patents. In addition,
the impact of corruption on technological complexity and the techno-
logical composition of regions is investigated. To improve the validity
of the results, two different corruption proxies are used, namely the
rate of single bidding in open tenders and the corruption pillar of the
European Quality of Government Index (EQI). Regarding the method-
ology, both the between and within estimators are applied to isolate
the cross-sectional and time dimension of variation in the data. The
results provide additional evidence supporting the argument in the lit-
erature that corruption sands the wheels of innovation. This is true
not only for the quantity of patent applications, but also for their
quality and the technological complexity of regions. Some evidence
was found that corruption might also alter the technological composi-
tion of regions, leading to a higher share of simple technologies. The
findings imply that the current decline in the control of corruption in
Europe must be halted to clear the way for bringing Europe back to
the forefront of innovation.

1 Introduction
Corruption, being defined as the abuse of entrusted power for one’s own per-
sonal gain, has existed for thousands of years and is a global phenomenon
that occurs in all cultures and societies. Its thorough exploration in re-
search, on the other hand, has begun only about 25 years ago. Nevertheless,
the economic and societal implications of corruption are quite well researched
[60]. Besides the monetary costs incurred by corruption, Transparency In-
ternational also defines political costs, since the freedom and rule of law are
affected, social costs because corruption decreases the trust and participa-
tion in government and environmental costs because corruption facilitates
environmentally harmful business practices [34].

A specific relationship that has been examined by several researchers al-
ready is that between corruption and innovation performance, both at the
(sub-) national and firm-level. Interestingly enough though, there is no gener-
ally accepted truth regarding the polarity of this relationship. Consequently,
there are two different views in the literature, often called the “greasing the
wheels of innovation” and “sanding the wheels of innovation” view [48]. Sec-
tion 2 will elaborate on this discourse in more detail.
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A less debated fact is that innovation has a positive effect on economic
growth [29, 50, 26]. The European Commission has recognized innovation
not just as one of the key drivers for economic growth and progress but also
as a means to “deliver jobs, prosperity, quality of life and global public goods”
[17]. Consequently, the programme “Horizon 2020” was initiated to secure
Europe’s global competitiveness. It was active from 2014 to 2020 with a
budget of almost EUR 80 billion. The goal of this research and innovation
centred programme is described by the European Commission as follows.

“The goal is to ensure Europe produces world-class science and
technology, removes barriers to innovation and makes it easier
for the public and private sectors to work together in delivering
solutions to big challenges facing our society.” [18]

The research question if and to what extent corruption affects the inno-
vation performance of European regions has relevant implications for policy-
making. If the hypothesis that corruption is a major obstacle to innovation
proves true, anti-corruption policy initiatives could be an effective measure
to support the long-term development of European regions and come closer
to the goal set by the European Commission.

Although this research question has been dealt with before, there are still
research gaps that justify its re-examination [52]. On the data side, there has
been some progress in the objective measurement of corruption risk in the
form of red flag indicators based on public procurement data, whose main
advantage is that they are available for all NUTS 2 regions of the EU for
several years and that they are not based on perceptions but on objective,
measurable facts [24]. Moreover, while there is good theoretical and empirical
evidence on the relationship between corruption and the number of patent
applications, it has not yet been analysed whether this relationship extends
to other facets of innovation performance such as the quality of patents, the
technological complexity, and the technological composition of regions.

2 Literature Review
In this section, the background literature will be reviewed. The first sub-
section deals with the question, how corruption can be reliably measured.
The second subsection will cover a similar question but for the innovation
performance of regions. The final subsection discusses the literature on the
relationship between corruption and innovation.
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2.1 Measuring Corruption Risk
Measuring corruption is a challenging task, especially when it comes to grand
corruption, that is, the dealings of the political elite and businesses. While
petty corruption, describing corruption in the interaction between public
officials and ordinary citizens, can be measured rather easily by surveying
citizens who have potentially experienced or witnessed this form of corrup-
tion before, it is significantly more difficult to detect grand corruption like
favouritism in public procurement [41].

2.1.1 Perception Based Corruption Indicators

Two of the most established attempts at measuring corruption are the World
Bank’s Control of Corruption indicator (CC) and the Corruption Perceptions
Index (CPI), which is calculated each year by Transparency International
[43]. Both are composite indices based on expert’s and business executive’s
perception of corruption in the respective country. While these perception-
based indices have opened the door for more elaborate empirical research
on corruption, their validity is somewhat limited, and they do not allow for
fine-grained analyses since they are only available at the country level [40].

Charron et al. (2014) addressed the lack of a reliable corruption indicator
on a sub-national level by conducting a multi-country survey questioning cit-
izens from 172 European regions about their perceptions of their quality of
government. From the results, they derived the European Quality of Govern-
ment Index (EQI), a composite index describing the level of “low corruption,
impartial public services and the rule of law”. They found that there are
significant disparities in the quality of government within European coun-
tries. The Italian region Bolzano for example, ranks among the very best in
Europe, while Campania is one of the regions with the lowest quality of gov-
ernment in Europe. The difference between the two regions is bigger than, for
example, the difference between Denmark and Hungary [14]. The EQI was
constructed four times so far, building on data collected in 2010, 2013, 2017,
and 2021 [16]. While the EQI definitely contributes to the empirical research
on regional corruption, it still suffers from the problems of perception-based
indices and is only available for four non-subsequent years, which impedes
analyses over time.

2.1.2 Objective Corruption Risk Indicator

Until recently, attempts at creating objective measures of corruption have
lacked validity and suffered from low data availability [40]. In 2016, Fazekas
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et al. proposed a new composite indicator of institutionalized grand cor-
ruption. Their Corruption Risk Index (CRI) addresses the lack of valid and
widely available objective corruption indicators. The CRI is based on mea-
suring the presence of so-called “red flags” in open tenders. These red flags
can hint at favouritism and the bypassing of fair competition in all phases
of the tendering process. In the submission phase, the set of bidders can
be intentionally restricted. In the assessment phase, bidders can be assessed
unfairly, and in the delivery phase, the conditions of performance can be
modified ex-post. The authors use logistic and linear regressions as valida-
tion methods, linking potential corruption inputs, which are defined as tech-
niques to achieve the corrupt outcomes, to the respective likely corruption
outcomes while controlling for influencing factors like the general competi-
tiveness of the market [24]. Decarolis and Giorgiantonio (2020) have further
contributed to the validation of red flags as predictors of corruption in public
procurement through the use of machine learning models. Their primary
measure of direct corruption risk is based on police investigations regarding
corruption-related crimes of firm’s executives. They conclude that many of
the red flag indicators are valid predictors of corruption and propose a set of
additional red flags [21].

2.2 Measuring Innovation Performance
Measuring the innovation performance of regions has been done frequently
in the literature. However, it is often unclear why a certain measure was
chosen and whether it is a valid proxy for the research question at hand.
Brenner and Broekel (2009) argue that the characteristics of a region affect
its innovation performance in two ways. First, it can attract innovation
generators and second, it can facilitate the innovation process of existing
innovation generators. One of the most common approaches to measuring
the innovation performance of a region is to measure the total innovation
outcome, usually approximated by the number of patent applications. In this
approach, the two aforementioned capacities are not measured separately.
Instead, the region with all of its characteristics is treated as a black box [9].

2.2.1 European Innovation Scoreboard

An alternative approach to measuring the innovation performance of Euro-
pean countries and regions was introduced in 2001 by the European Com-
mission in the form of the European Innovation Scoreboard (EIS) and the
Regional Innovation Scoreboard (RIS). The 2020 version of this composite
index comprises 27 indicators, capturing the framework conditions, invest-
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ments, innovation activities and impacts. The main goal of the scoreboard
is to help countries improve their innovation performance by demonstrating
which areas they should focus their efforts on [32].

The methodology of the EIS has been revised several times over the years
as a response to criticism and changed circumstances [30, 31]. While it
is laudable that the European Commission acknowledges possible improve-
ments, it means that the EIS is not really comparable over time. Further-
more, the general approach has been criticised because it combines innovation
inputs and outcomes in one composite indicator [22]. Brenner and Broekel
(2009) argue that this approach makes it unclear what the EIS and RIS really
measure. They conclude that, although it is not explicitly stated, the RIS
might be an attempt at capturing a region’s capacity to establish innovation
generators by including many different proxies [9].

2.2.2 Patents as Measure of Innovation Outcome

Even if innovation inputs and outcomes are kept separately, the commonly
available proxies have some substantial limitations. For example, the com-
mon practice of using the number of patents as a proxy for innovation out-
come is quite imperfect. The propensity to patent differs between industries,
and many inventions are not patented at all, especially process innovations.
The unique advantage, however, is that patent data is widely available at the
regional level over many years [52].

One might argue that measuring innovation performance simply through
the number of patent applications postulates that all patents are the same.
This, however, does not reflect reality since every patent has its unique eco-
nomic and technological value. To address this fact, scholars have proposed
several methods to evaluate patents. Van Zeebroeck and van Pottelsberghe
(2011) criticize the robustness and inconsistencies between studies of many
of these proposed measures, concluding that great care should be taken when
using a single patent value indicator [56]. Similarly, van Zeebroeck (2007)
proposes that composite indicators can better capture the different dimen-
sions of a patent’s value than single indicators since the respective single
indicators are only weakly correlated with each other and show different in-
dustrial patterns [55]. An important contribution to this strain of research
has been made by Squicciarini et al. (2013). They propose a wide array of
patent value indicators and accompany them with sensitivity and correlation
tests and, most notably, a dataset that contains these indicators for patent
applications filed at the European Patent Office (EPO) [53].
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2.2.3 Technological Complexity

Mewes and Broekel (2020) have shown that the technological complexity of
a region is a potent predictor of economic growth. Complex technologies are
difficult to invent and imitate but offer substantial economic benefits [45].
It can thus be argued that the capacity of a region to attract generators
of complex technological innovations is a good measure for its innovation
performance. The potential problem with this argument is that the agglom-
eration of industries can not be seen as a direct reflection of a region’s specific
attractiveness but is strongly influenced by chance, self-reinforcing dynamics
and historical developments [9].

2.3 Relationship Between Corruption and Innovation
Performance

As briefly touched upon in the introduction, the potential effects of corrup-
tion on innovative capacity have been investigated already by several research
scholars. Interestingly, there are two opposing views regarding the polarity
of this relationship.

2.3.1 Greasing the Wheels of Innovation

One line of argumentation is that corruption can be beneficial for economic
growth and innovative activity because it reduces the amount of time and
effort spent on bureaucratic processes for companies that are willing to pay
bribes. This “grease money” effect has, for example, been studied by Kara-
man (2018). She analysed the effect of corruption on firm-level innovation in
Eastern European and Central Asian countries and concluded that there is
a significant and robust positive relationship [36]. Riaz and Cantner (2019)
have analysed 16 developing and emerging economies and found that in the
majority of cases, there is a positive association between monetary corruption
and innovative performance of firms, although the effect varies by industry
[51].

2.3.2 Sanding the Wheels of Innovation

The predominant view, however, is that corruption has a negative impact
on innovation performance. Corrupt regimes are unattractive for outsiders
because they cannot profit from the established network structure and face
unfair conditions. Furthermore, the rent-extraction of corrupt officials re-
duces the prospected profits of potential innovators. Tampubolon (2018)
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adds that the already high risk involved in investing in research and devel-
opment gets amplified by a low quality of governance because the risk of
successful arbitrary claims to the intellectual property against the inventors’
claims is higher if no fair and reliable institution upholds the law [54].

Rodríguez-Pose and Di Cataldo (2015) have analysed how the quality of
governance affects innovation outcome in European regions and concluded
that there is a significant positive relationship, or in other words, the lower
the quality of government, the less innovative a region is. They employed a
dynamic fixed effects regression model using the annual change in the loga-
rithmic transformation of the number of patent applications to the European
Patent Office per million inhabitants as the dependent variable and the EQI
as the independent variable while controlling for time-related shocks, R&D
expenditure, the characteristics of the labour market, and the socio-economic
structure of the regions [52].

One aspect of this study that needs to be critically highlighted is that
Rodríguez-Pose and Di Cataldo chose a time span between 1997 and 2009
for their analysis even though at that point in time, the EQI was only avail-
able for the year 2010. Referencing the work of Charron et al. (2014), they
assumed that within countries, the change in institutional quality is homo-
geneous enough to take the variation of the World Governance Index (WGI),
which is calculated at the country level, to extend the EQI across longer time-
periods [52]. The question arises whether this approach does not undermine
the original intention of acknowledging the substantial within-country varia-
tions in the quality of government. Regarding the research question, research
subjects, and general methodology, this work is closest to my thesis.

The next section explains the variables used in this study, which will also
shed more light on how this thesis differs from previous research.

3 Data

3.1 Dependent Variables - Proxies for Innovation Per-
formance

As was elaborated in section 2, there is no real state of the art when it comes
to measuring innovation performance. I do share the criticism of Brenner
and Broekel (2009) regarding the EIS. Not keeping innovation outputs and
inputs as separate measures is imprecise and impedes the interpretation of
findings. That said, only focusing on the innovation output might also fall
short.

Broekel et al. (2017) argue that besides the total innovation output,
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an important part of innovation performance is how many resources were
utilized to achieve this result. Their contribution to the literature on this
matter is that they developed a measure for the cross-industry innovation
efficiency of regions while controlling for the respective industrial structure
[12].

Regarding the underlying research question of this thesis, both the inno-
vation effectiveness and the innovation efficiency are of interest. The latter
describes how well the given innovation inputs are transformed into inno-
vation outputs. Therefore, this measure is suitable to answer whether cor-
ruption facilitates or impedes the innovation process of existing innovation
generators. The total innovation output, on the other hand, is more suitable
if we also want to assess a region’s capacity to attract innovation genera-
tors in the first place. To allow for a comprehensive understanding, both
concepts are modelled. My source of patent applications to the European
Patent Office (EPO) is the OECD REGPAT Database, January 2021.

3.1.1 Patent Quality

In addition to the number of patent applications, I also consider their respec-
tive quality, as the considerable differences in the economic and technological
relevance of different patents should not be ignored. The patent quality proxy
used in this thesis was developed by Squicciarini et al. (2013). I use their
composite index, which is based on the following four components.

i Number of forward citations
Forward citations are citations that a patent receives. They are, there-
fore, a measure of the technological importance because subsequent
technologies build upon the cited patent. For the composite indicator,
forward citations are counted over a five year period after the patent
was published, which is usually 18 months after the filing date. This im-
plies a timeliness problem due to truncation. Time-fixed effects should,
however, be able to capture and compensate for this effect. Empirically,
a rather small fraction of patents receive a large proportion of all for-
ward citations.

ii Patent family size
The patent family size is defined as the number of different patent offices
to which an invention has been filed. This is a good indicator for the
economic value of a patent because applicants will only accept these
additional costs and the extra time involved if they assume that the
profit generated by the patented technology will exceed the investment
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sum. The exceptionally high value associated with large patent families
has been shown by Harhoff et al. (2003) [20].

iii Number of claims
Claims define which aspects of a technology are legally protected by the
patent. A higher number of claims usually imposes a higher application
fee but is also associated with a higher economic value [42].

iv Patent generality index
The patent generality index is also based on forward citations. It aims
at measuring the relevance of a patent for later inventions in different
technological fields. If a patent only receives forward citations in its own
technological field, the generality is considered to be low. A limitation
of this index is that it does not differentiate according to the distance
of technology fields. Similar technologies are treated in the same way
as very distant ones.

The patent quality index weights all four components equally because the
empirical evaluation has shown that unequal weights would have to differ
between technologies and time frames which would limit the comparability
of the indicator [53]. The data are included in the OECD Patent Quality
Indicators Database.

3.1.2 Technological Complexity

One of my research questions is whether and to what extend corruption
affects technologies of different complexity levels differently. But how can
technological complexity be measured and quantified? Broekel (2019) tries
to answer this question using structural diversity. He models technologies as
combinatorial networks and measures the diversity of the occurring topolo-
gies. To demonstrate the reasoning behind this approach, let’s think of a
chair as an example of a very simple technology. A typical chair consists of
a seat, four chair legs and a backrest. It can be modelled as a star-like struc-
ture with the seat at the centre. Consequently, only minimal information is
required to describe the chair from an information-theoretical perspective,
and it can be easily invented, copied, and codified. In contrast, it is far more
difficult to describe the network topology of a rocket engine, for example.
Broekel (2019) therefore argues that the structural diversity of a technology
can be used as a proxy for its complexity [10]. Broekel (2019) calculated
the structural diversity score for 655 technologies, defined by the four-digit
CPC classes. The data containing the respective values for each of the 655
technology classes for the years 1970 to 2016 are provided on his website [11].
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3.2 Proxies for Corruption
As was explained in section 2, there is no ideal measure for corruption. When
it comes to the regional level, the number of eligible indicators shrinks even
more.

3.2.1 European Quality of Government Index (EQI)

Besides suffering from the problems associated with perception-based indi-
cators and only being available for four non-subsequent years, the EQI is
arguably the most sophisticated attempt to date to measure corruption risk
in European regions. Since it is not available for subsequent years, its ap-
plicability in panel analyses is unfortunately somewhat limited. However,
since corruption is a rather persistent phenomenon and big jumps between
successive years are not expected, interpolating the values for the missing
years is a reasonable approach [28].

3.2.2 Red Flags in Public Procurement

In addition to the EQI, the CRI and other variants of red flag based corrup-
tion risk indicators were considered as corruption proxies.

To cross-check the data, I used two different sources. First, I drew on
opentender.eu, an online platform administered by DIGIWHIST aiming to
make public procurement more transparent [1]. DIGIWHIST is a project
carried out by six European research institutes and funded through Horizon
2020 to collect, structure, analyse, and disseminate public procurement data
[44]. To be precise, I use their collection of contracts published on the Tenders
Electronic Daily (TED) database. It is mandatory to publish tenders on
TED if they fall within the scope of the EU Public Procurement Directives,
which applies to tenders whose contract value exceeds around EUR 130,000
if they are service contracts and around EUR 5,000,000 if they are public
works contracts. DIGIWHIST also collect national public procurement data
under the threshold value, but they are generally not comparable due to the
different national tendering procedures [23].

The second source for the corruption proxies is the QOG EU Regional
Dataset, curated by the Quality of Government Institute at the University of
Gothenburg and contains more than 300 variables covering twelve categories.
It contains the EQI and its components as well as four of the proxies for
corruption risk in public procurement, namely the share of single bidding in
competitive markets, the share of contracts with no published call for tender,
the share of contracts with a procedure classified as non-open, and the share
of contracts with tax haven red flag [13].
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Due to some data inconsistencies in the dataset containing individual
contracts, the QOG EU Regional Dataset, which is aggregated on the regional
level, was used in the final analysis. Unfortunately, the earliest year covered
in the data is 2011, limiting the temporal dimension of the analysis to a
period of less than ten years, which admittedly is not very much in terms of
corruption, which generally tends to be quite persistent. Nevertheless, there
are observable trends, even over the course of just a few years [15].

3.3 Control Variables
To minimize omitted variables bias, I control for the main potential con-
founders. Based on the literature, I identified the following variables that
define the socioeconomic and labour market structure of regions and the
two main innovation inputs, namely human capital, represented by the share
of employees in high-tech sectors, and monetary capital, i.e. spending on
research and development.

Table 1: Control Variables

Definition Source

GDP PPS Gross domestic product in purchas-
ing power standards per inhabitant

Eurostat

Unemployment Unemployed persons divided by eco-
nomically active population * 100

Eurostat

Pop. Density Inhabitants per square kilometre Eurostat
Primary Sector Workers in the primary sector, di-

vided by total number of workers *
100

Eurostat

Tertiary Ed. Persons with tertiary education aged
25–64 divided by total population
aged 25–64

Eurostat

Hightech Employees in high-technology man-
ufacturing and knowledge-intensive
high-technology services, divided by
total number of workers * 100

Eurostat

R&D Spending Intramural R&D expenditure
(GERD) in Euro per inhabitant

Eurostat
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4 Data Processing

4.1 NUTS Nomenclature
The Nomenclature of Territorial Units for Statistics (NUTS) was first estab-
lished by Eurostat and used in EU legislation in 1988 to facilitate consistent
statistical analyses and political interventions on a regional level. 15 years
later, in 2003, the European Parliament and the Council formally encoded it
in a regulation. Since then, there have been multiple amendments, namely
in 2006, 2010, 2013, 2016, and most recently, in January 2021. Regions are
classified in a three-level hierarchy, although for some countries, these lev-
els represent the same territory. In the case of Luxembourg, for example,
there is no difference between NUTS 1, NUTS 2 and NUTS 3, which is re-
flected in the respective codes LU0, LU00 and LU000. Table 2 depicts the
Austrian “Bundesland” Vorarlberg as a typical example of the hierarchical
classification [2].

Table 2: NUTS Classification of Vorarlberg - Austria

NUTS1 NUTS2 NUTS3

AT3 Westösterreich
AT34 Vorarlberg
AT341 Bludenz-Bregenzer

Wald
AT342 Rheintal-

Bodenseegebiet

Whenever possible, NUTS regions are based on administrative units, like
the Austrian “Bundesländer”. However, sometimes there is no administrative
unit for a particular level, so the aggregation of smaller administrative units
is necessary. This is, of course, not ideal for statistical analyses, but due to
limited data availability, this constraint has to be accepted.

The NUTS’ main purpose is to ensure a consistent, harmonized stan-
dard for the classification of regions. However, exactly this comparability is
limited across several years and NUTS versions. Amendments include recod-
ing, discontinuation, merging, splitting, and boundary changes of regions [2].
Therefore, harmonising different NUTS versions is challenging, especially if
more than two versions are included in the data.

To handle this issue, the two R packages Eurostat and regions were used.
The Eurostat package implements several tools and functions specifically
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designed to work with data from Eurostat. Some of these functions are dedi-
cated to harmonizing NUTS 2013 and NUTS 2016 codes [39]. Recoding and
relabelling between these two versions are handled well by the package. How-
ever, harmonizing regions that have undergone spatial changes and dealing
with NUTS versions before NUTS 2013 is not possible. The regions package
was developed specifically to address the typical data processing, validation
and imputation issues that arise when working with sub-national data. It has
extended recoding capabilities compared to the Eurostat package, tracking
boundary changes in the EU between 1999 and 2021. Furthermore, it allows
for data aggregation and disaggregation to impute higher NUTS levels to
lower ones and vice versa [6].

Unfortunately, even with both packages employed in an iterative process,
the harmonization proved cumbersome and error-prone. Therefore, some
regions had to be excluded from the analysis to ensure consistent units for
which a comparison over time is meaningful. Furthermore, choosing the
NUTS version for the harmonization was not straightforward because while
the OECD REGPAT database mainly corresponds to NUTS 2013, other used
data sources mainly follow NUTS 2016. NUTS 2013 was finally chosen due
to the importance of the REGPAT data for the analysis.

4.2 Patent Data
The OECD REGPAT database, January 2021, contains several datasets de-
rived from the European Patent Office’s Worldwide Statistical Patent Database
(PATSTAT Global, Autumn 2020). Two of these datasets are used in this
thesis. The first contains patent applications and inventors, as well as their
residential addresses and, derived from the addresses, the respective NUTS
3 regions. It consists of 9,768,237 observations. The second relevant dataset
contains patent applications and the Corporate Patent Classification (CPC)
classes related to the invention. CPC classes define technologies hierarchi-
cally and classify them into nine classes on the highest and more than 230,300
subclasses at the most granular level. The CPC classes are needed to link
the technological complexity to the patents [10]. As patents usually comprise
several different CPC classes, this dataset contains significantly more entries
than the basic dataset, namely 49,635,779. The third OECD patent dataset
used is the OECD Patent Quality Indicators database, January 2021, which
contains 19 indicators for 1,449,688 patents.

In the first processing step, the 10-digit CPC classes are reduced to 4-
digit CPC classes to align with the work of Broekel (2019). Then, the CPC
codes are merged with the patent quality dataset and the respective struc-
tural complexity values. Finally, the most complex technology class related
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to the invention is taken as the complexity score of the patent. This makes
more sense than taking the mean value, as otherwise, the complexity of an in-
vention involving complex and simple technologies would be underestimated
[45].

After these basic operations, the technology field is determined according
to the WIPO IPC - Technology Concordance Table, which divides technolo-
gies into 5 sectors and 35 fields. The coarsest level of separation consists
of the sectors Electrical Engineering, Instruments, Chemistry, Mechanical
Engineering and Other Fields.

The data is then aggregated to region-year units by summing up the
number of patent applications per sector in each year and region weighted
by the inventors’ share. The patents are linked to a certain region, not
via the applicant but the inventors. This is more adequate because large
corporations often file patent applications through their headquarter and
not the subsidiary where the technology was actually invented [45]. When
multiple inventors from different regions are involved, the patent is partially
attributed to each region. This means that if there is one inventor from
region A and one inventor from region B, the patent will only be counted as
0.5 patents for each region to avoid double-counting. After the aggregation,
the NUTS 3 codes were harmonized as diligently as possible and aggregated
to the NUTS 2 level.

Incompleteness is an issue that runs through all the data used in this
thesis. Before aggregation, about one-third of the patent applications did
not have a patent quality score assigned to them. After the aggregation, this
was reduced to 65 out of 1840 region-year units that fully lacked patents with
quality score. The missing values were, if possible, imputed by inserting the
mean value of the respective region over all years. This was possible for all
but the two regions Vóreio Aigaío and Madeira. The country-level mean was
imputed in these cases.

One of the main purposes of the NUTS classification is to have compa-
rable territory units. Nevertheless, there are enormous differences regarding
population, area, economic weight and administrative power. The NUTS 2
region with the largest number of inhabitants is Île de France, with about
12.2 million inhabitants, while the smallest region, Åland (Finland), only has
about 29,500 inhabitants [2]. This is a ratio of about 414:1. It is therefore
indispensable to transform the number of patent applications to a per capita
measure.

Unfortunately, the Eurostat population data is systematically missing
observations due to the NUTS amendments. To compensate for this, the
data was supplemented with data from the Annual Regional Database of
the European Commission’s Directorate General for Regional and Urban

20



Policy (ARDECO) which is mainly based on data from Eurostat but updated
twice a year and complements the Eurostat data with other national and
international sources to fill in missing values [27].

4.3 Corruption Risk Data
Since the EQI is only available at NUTS 1 instead of NUTS 2 level for some
regions, the first data processing step replaces the missing values on the
NUTS 2 level with the corresponding NUTS 1 level data. In the next step,
missing values of the EQI and Red Flag variables are, if possible, linearly
interpolated and end values carried backwards or forward, respectively. At
this point, there are still missing values because the interpolation is only
possible if there is at least one non-missing observation. If this is not the
case, the respective NUTS 1 value or country-level value is imputed.

Table 3: Missing Values - Corruption Variables

Variable
Missing Values in Percent

Initial Interpol. NUTS 1 NUTS 0
No Call 22 3.64 1.82 0.36
Non Open 22 3.64 1.82 0.36
Single Bidding 22 4.00 1.82 0.36
Tax Haven 22 3.64 1.82 0.36
EQI Corruption 75 7.64 6.18 2.91

4.4 Control Variables
Eurostat is the main source for the control variables. Eurostat data is struc-
tured but not completely tidy. Therefore, a wrangling function was written
to process the different datasets efficiently. The function first harmonizes
the NUTS codes, then filters for NUTS 2 regions, removes inconsistent re-
gions, selects only the relevant columns containing the region code, year and
value of interest, replaces : with NA, removes whitespace from numbers,
converts them to numeric, renames the Value column to a meaningful name
and removes duplicates.

Missing values are treated in an iterative process. First, if possible, miss-
ing values are linearly interpolated. End values are carried forward or back-
wards, respectively. This interpolation method cannot impute all missing
values because for some regions and variables, all values are missing across
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all years. In these cases, the value of the respective NUTS 1 region was im-
puted and, if this also failed, the value of the respective country was taken
instead. Table 4 shows the percentage of missing values at the beginning
and after interpolation and NUTS 1 imputation. After the final step, i.e.
the imputation of country-level values, all missing values have been imputed.
Table 4 shows the percentage of missing values after each imputation step.

Table 4: Missing Values - Control Variables

Variable
Missing Values in Percent

Initial Interpol. NUTS 1
GDP PPS 16 1.67 1.32
Unemployment 11 0.36 0.36
Pop. Density 10 0.00 0.00
Primary Sector 16 3.28 1.46
Tertiary Ed. 11 0.36 0.00
Hightech 18 4.74 1.09
R&D Spending 36 2.19 1.82

5 Descriptive Analysis

5.1 Innovation Performance
Innovation performance is very heterogeneous in the European Union. As
figure 1 shows, patenting is especially concentrated in the southern part of
Germany, Austria, Paris, London and parts of the Scandinavian countries.
The periphery of Europe, on the other hand, has significantly fewer patent
applications per capita. Due to these vast differences, the map’s colour coding
is based on quantiles instead of equal intervals.

The average patent quality, on the other hand, depicts a slightly different
picture, as can be seen in figure 2. The country that stands out due to an
exceptionally high average patent quality throughout all its regions is Great
Britain. The European periphery tends to produce lower quality patents,
although there are some exceptions.

From a methodological viewpoint, it can be argued that the average
patent quality might not be the best measure of a region’s capacity to pro-
duce high-quality patents. If a region produces the highest-quality patents
but also simpler ones, the average underestimates its overall innovative capa-
bilities [45]. Figure 2 highlights that the highest-quality patents are indeed
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Figure 1: Map of Patent Applications

mainly produced in the centre of Europe compared to the periphery with a
significantly lower capacity to produce highly valuable patents.

Looking at the technological complexity, as defined by Broekel (2019), it
becomes even clearer how vastly different results and conclusions can be, de-
pending on whether the average or the maximum is considered. Interestingly,
the average technological complexity is generally higher in the periphery than
in the centre of Europe. However, the most complex technologies are invented
mostly in the more central European regions and the Scandinavian countries.

The difference between the average and highest patent quality and com-
plexity is also reflected figure 4, the correlation matrix of the innovation
proxies. The average patent complexity is barely correlated with the other
patent variables. The maximum patent quality and complexity, on the other
hand, are highly correlated with each other and the number of patent appli-
cations per 100,000 inhabitants.
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Figure 2: Maps of Patent Quality
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Figure 3: Maps of Technological Complexity
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Figure 4: Correlation Matrix of Patent Variables
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5.2 Corruption Risk
Looking at the map of Single Bidding and the EQI Corruption Pillar, an
east-west gap is clearly visible. Greece could be seen as an outlier when
it comes to Single Bidding. According to the data, it is the country with
the least occurrence of Single Bidding in competitive markets. On the other
hand, the EQI shows that according to its citizens’ perception, it is among
the most corrupt countries in Europe. This does not necessarily have to mean
that the data is erroneous. Single Bidding is, after all, simply an indirect
proxy for corruption risk in public procurement. It can, of course, be that
either the Greece public procurement is indeed not very corrupt or that other
corrupt methods are used that are not reflected in the Single Bidding red flag.
Nonetheless, at least one of the two corruption proxies does not do a good
job of reflecting the true extent of corruption in Greece. Therefore, the Greek
regions will be excluded from the analysis to avoid distorted results.

Figure 5: Map of Single Bidding
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Figure 6: Map of EQI Corruption Pillar

Besides the spatial distribution of corruption in Europe, it is, of course,
also interesting to see how it has developed over the period analysed. The
answer is quite alarming. While the ratio of Single Bidding contracts has
risen significantly since 2014, the average EQI has dropped by several points.
Both corruption proxies show that corruption in the EU has increased quite
substantially from 2011 to 2017.

5.3 Sources of Variation
Because the data are panel data, one can measure cross-sectional variation
between regions and variation over time within regions. I calculated the
average coefficient of variation1 for the corruption and innovation proxies.
Table 5 shows what could already be expected. The variation within regions
is considerably smaller than between regions for all of the variables. Nev-

1Ratio of the standard deviation to the mean times 100
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Figure 7: Development of Single Bidding over Time

Figure 8: Development of the EQI over Time

ertheless, there is variation in both dimensions. This is confirmed by the
pvar function, implemented in the R-package plm, that tests for statistically
significant variation.

Figure 9 helps in getting a better intuition regarding the sources of vari-
ation. Five regions are randomly selected, and the respective variation over
time of the innovation and corruption proxies plotted. In this sample, the
log-transformed number of patent applications per 100,000 inhabitants shows
large between region heterogeneity but is rather stable within regions. The
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regions with high patent counts are more stable over time than those with
little patenting activity, at least in relative terms. The average patent quality
shows a similar picture. While the Austrian, German, and British regions
do not vary much among themselves and over time, the Polish and Greek
regions vary considerably over time. This is not surprising, as individual
patents make a larger difference in the mean when there is only a small
number of patents overall. The average technological complexity is relatively
homogeneous amongst the sample regions except for the German region Kas-
sel which clearly shows an upwards trend and reaches a significantly higher
average technological complexity by 2017. The Single Bidding plot shows
again the extraordinarily low Single Bidding ratio in Greek regions. The
Polish region Łódzkie on the other hand has a significantly higher percent-
age of Single Bidding contracts and strong variation over time. The final plot
of the EQI reveals no surprising patterns. There are large between region
differences, but regions change rather slowly over time.

Table 5: Variation Within and Between Regions

Within CV Between CV

Log Patents 20.21 45.96
Patent Quality 12.58 19.99
Complexity 2.06 3.38
Single Bidding 56.85 90.24
EQI 9.59 34.08
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Figure 9: Plots of Variation
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6 Methods
Choosing an appropriate research method and model specification is not triv-
ial, especially in panel data analyses. The two-dimensionality2 of panels can
potentially enhance the quality of estimates [59], However, it gets quite com-
plex when it comes to the exact specifications due to the variety of applicable
estimators and model specifications and the ongoing discussion in academia
regarding the state-of-the-art [8]. Often, there is no one best approach, and
in the end, it comes down to the researcher’s preferences and beliefs [46].
This section outlines the advantages and disadvantages of commonly used
model types and concludes with my selection.

The most basic approach to panel regressions is to apply ordinary least
squares (OLS) to the pooled data. Problems can arise due to the assumption
that the error term is not correlated with the independent variables because
this would require that all influencing factors that are specific to the indi-
vidual units are included as control variables in the model [58]. Pooled OLS
models are therefore insufficient when the observations are not independent
of each other, which is given in a real panel structure [59]. Furthermore, a
straightforward interpretation of the estimated coefficients is impossible be-
cause within-unit and between-units effects are mixed [7]. Another rather
simple model type is the between estimator. The data is simply averaged
over the years, completely eliminating the time dimension. Regular OLS is
then applied to the transformed, cross-sectional data. The main advantage
of this model type is that noise in the data is significantly reduced, albeit at
a loss of information.

A widely used model type that partially accounts for omitted variable bias
is the fixed effects model. The major advantage is that unobserved hetero-
geneity is controlled for in the form of effects that are specific to each unit and
constant over time. Additionally, shocks that affect all units equally can be
modelled via time-fixed effects [58]. An easy to understand implementation
of this model type is the Least Squares Dummy Variable model (LSDV). As
its name implies, i-1 dummy variables are included in the formula to estimate
the individual-fixed effects. The same concept can be applied to time-variant
shocks that are identical for all units. In this case, t-1 time dummies are in-
cluded in the model. This model type assumes constant slopes but intercepts
that vary between the units. By including unit dummy variables, only varia-
tion within units, in our case regions, is considered. Because of this, it is also
called within estimator. One major drawback of the fixed effects model is
that a large number of cross-sectional units can lead to an insufficient number

2individuals and time
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of degrees of freedom which impedes powerful statistical tests. Further is-
sues regarding inflated standard errors can arise due to multicollinearity [59].
Additionally, time-invariant variables are fully absorbed by the fixed effects.
Their effect can therefore not be estimated because only the variation within
a region is analysed [7]. This could potentially be problematic considering
the rather short time period for which regional corruption data is available
and the fact that the levels of corruption and innovation are rather persistent
and do not change rapidly, especially not on a yearly basis [28].

If applicable, the random effect (RE) models are more efficient and allow
for the inclusion of time-invariant variables. In the RE model, the intercept
is treated as a random outcome variable. More precisely, it is assumed to
be a function of a mean value plus a random error. This random error is
time-invariant and specific to a particular observation [59].

Autocorrelation, or serial correlation, is another potential factor that
needs to be considered in the model selection process. One way to deal
with serial correlation is to include the lagged dependent variable as a re-
gressor. This type of models is called dynamic panel models [59]. Kelly
and Keele (2004) use a Monte Carlo simulation to show that excluding the
lagged dependent variable when autocorrelation is present leads to a strong
positive bias in the estimated coefficients. On the other hand, if the lagged
dependent variable is wrongly included in a static model, the coefficients
of the predictors can be heavily underestimated [37]. Achen (2000) shows
that lagged dependent variables that are included as regressors often take on
highly significant, large coefficients while suppressing the effects of the other
explanatory variables. Occasionally, even the signs of the other coefficients
are flipped. To demonstrate this, he takes a regression with social welfare ex-
penditures as the dependent variable and the percentage of inhabitants older
than 64 and the unemployment rate as explanatory variables. He shows that
before the inclusion of the lagged dependent variable, the explanatory vari-
ables take on sensible and significant coefficient values. However, after the
inclusion, the results shift tremendously, with a collapse of the estimated
coefficients to about 1 % and 2 % of their original values. The coefficient of
unemployment even becomes negative, which would mean that a higher un-
employment rate leads to lower social welfare expenditure [3]. Furthermore,
including a lagged term of the dependent variable in fixed effects models
causes the so-called Nickell bias [47].

According to the Hausman test, the RE model is no suitable option for
these data and is therefore not used. Due to the small number of available
years in the data and the finite-sample bias that occurs when lagged depen-
dent variables are included in fixed effects models, I choose a static specifica-
tion. Furthermore, I model the variation between regions and within regions
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over time separately with the between and within estimators, respectively.
This separation allows for a clearer interpretation of the results because the
between and within region effects are not averaged in one model [38].

7 Results

7.1 Correlations
Before presenting the regression results, I want to start this section with the
simplest of statistical relationships, namely correlations. The correlations be-
tween the corruption and innovation proxies show expected and unexpected
relations. As anticipated, the Single Bidding red flag is negatively correlated
with all innovation proxies, the strongest correlation being with the patent
applications, weighted by their respective quality. The correlation between
the corruption pillar of the EQI with the innovation proxies is even stronger,
with an impressive correlation coefficient of 0.70 with the number of patent
applications per 100,000 inhabitants. What is rather surprising is that Sin-
gle Bidding seems to be the only red flag that is negatively correlated with
the innovation proxies. The other three red-flag indicators are mildly posi-
tively correlated with the patenting activity, which results in the CRI3, being
basically uncorrelated with the patent variables.

These results, in combination with the fact that using just Single Bidding
instead of the CRI as a proxy for corruption risk in public procurement is
suggested and validated by the authors who have also proposed the CRI,
motivates the choice to continue with Single Bidding together with the EQI
corruption pillar as corruption proxies for the rest of this thesis [25].

Table 6: Correlations Patenting and Corruption

Quantity Quality Complexity Weighted
CRI -0.02 0.03 -0.03 -0.04
No Call 0.13 0.16 0.03 0.10
Non Open 0.03 0.05 0.02 0.01
Single Bidding -0.36 -0.30 -0.21 -0.38
Tax Haven 0.06 0.05 0.08 0.07
EQI Corruption 0.70 0.53 0.39 0.69

3the arithmetic mean of the red flags indicators
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Figure 10: Scatterplots - Patent Quantity and Corruption Proxies
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7.2 Effect on Patent Quantity
7.2.1 Between Estimator

The between region analysis of the effect of corruption on the quantity of
patent applications results in two main regression specifications. The first
has the following form:

Patentsr = ↵ + �1Corruptr + �Xr + ✏r (1)

where ↵ is the intercept and Patentsr represents the number of patent
applications per 100,000 inhabitants. Corruptr is a matrix containing Single
Bidding and the EQI Corruption Pillar. X i is the matrix of control variables,
so GDP per capita in purchasing power standards (PPS), the unemployment
rate, population density, the share of workers in the primary sector and the
rate of inhabitants who completed the tertiary education level, with � being
the vector containing the respective coefficients. ✏i is the error term. All
variables but the EQI are transformed by applying the natural logarithm.
The bar above the variables shows that they represent averages over all years
for which data are available. A constant of 1 is added to the Single Bidding
rate to avoid the problem of negative infinite values when there were no
Single Bidding contracts at all in a given year and region.

With the second specification, I control directly for the most important
innovation inputs. The purpose of this specification is to see whether cor-
ruption has a statistically significant effect, even when the level of innovation
inputs is held constant. This corresponds to the concept of innovation effi-
ciency [12]. To be precise, the model has the following form:

Patentsr = ↵ + �1Corruptr + �Xr + !Inputsr + ✏r (2)

where the newly introduced matrix Inputsi contains the percentage of
employees working in high-technology sectors and the intramural expenditure
on research and development.

Table 7 shows the regression results. In the specification without innova-
tion inputs, Single Bidding as a proxy for corruption in the public procure-
ment has a negative estimated effect on the number of patent applications
per 100,000 inhabitants at the 0.1 significance level. An increase in the rate
of Single Bidding contracts by 10% is associated with a decrease of patent
applications per capita of 1.46%. The control of corruption pillar of the EQI
has a highly significant positive effect that only becomes slightly smaller
when the innovation inputs are included, with an increase of one standard
deviation being associated with an increase in patent applications per capita
of 0.446%.
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7.2.2 Within Estimator

The fixed effects regressions resemble the previously described regression for-
mulae in most parts. However, due to the exploitation of the time-series
dimension of the data, some key distinctions are apparent. The regressions
have the following forms:

PatentsMAi,t = ↵r +  t + �1CorruptMAr,t + �Xr,t + ✏r,t (3)

PatentsMAr,t = ↵r +  t + �1CorruptMAr,t + �Xr,t + !Inputsr,t + ✏r,t (4)

where ↵r captures region-fixed effects,  t year-fixed effects and PatentsMAr,t

is a left-aligned three year moving average of the form:

1

3

t+2X

i=t

Patentsr,i (5)

This filter is applied to bring the innovation proxy closer to the true level
of innovation in a given year t. Patent applications reflect innovative activity
that predates the filing of the patent application by several years [4]. It
is therefore sensible to consider not only patent applications in t but also
in t + 1 and t + 2 in the approximation of the innovation level in year t.
CorruptMAr,t is a right-aligned three year moving average of the form:

1

3

tX

i=t�2

Corruptr,i (6)

The primary reason for smoothing, in this case, is to reduce the negative
effect of noise in the Single Bidding variable. Contrary to the approach
used for smoothing the number of patent applications, the moving average is
calculated by considering the previous two years’ values. The reason for this
is to better model the environment in which the invention of new technologies
has taken place and the fact that corruption is expected to affect the level of
innovation rather delayed than immediately. To demonstrate this intuitively,
imagine being the director of a research facility. It will most likely not be
possible to relocate the facility immediately in response to a changed level of
corruption because this requires quite some lead time. However, in the longer
term, resources will presumably be allocated to more favourable locations.

In the within estimation, Single Bidding has a highly significant negative
estimated effect, while the effect of the EQI is not significantly different from
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0. This is an interesting observation, considering that the two corruption
proxies are based on very different concepts with very different advantages
and disadvantages. One of the main advantages of the Single Bidding in-
dicator is that it is not based on perceptions and therefore does not suffer
from the stickiness associated with perception-based indicators, like the EQI,
for example. The fact that the EQI is highly significant in the between but
insignificant in the within estimation and vice versa for Single Bidding does
not allow for a causal conclusion to be drawn about the specific reason. Still,
it is an interesting finding that could be the subject of future research. The
estimated effect size of Single Bidding is arguably rather small. An increase
of the Single Bidding rate of 10 % is associated with an expected decrease in
the number of patents per capita of 0.29%, ceteris paribus.
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Table 7: Patent Quantity - Between Estimator

Dependent variable:
LN Patent Applications per 100,000 Inhabitants

(1) (2) (3) (4)

Single Bidding �0.146⇤ �0.052
(0.084) (0.068)

EQI Corruption 0.577⇤⇤⇤ 0.446⇤⇤⇤
(0.073) (0.063)

GDP PPS 2.071⇤⇤⇤ 0.331 1.745⇤⇤⇤ 0.255
(0.193) (0.202) (0.178) (0.184)

Unemployment �0.646⇤⇤⇤ �0.597⇤⇤⇤ �0.453⇤⇤⇤ �0.410⇤⇤⇤
(0.109) (0.086) (0.099) (0.080)

Pop. Density �0.284⇤⇤⇤ �0.095⇤⇤ �0.160⇤⇤⇤ �0.032
(0.053) (0.044) (0.050) (0.041)

Primary Sector �0.484⇤⇤⇤ �0.202⇤⇤⇤ �0.401⇤⇤⇤ �0.130⇤
(0.087) (0.073) (0.078) (0.067)

Tertiary Ed. 0.154 0.007 �0.422⇤⇤ �0.525⇤⇤⇤
(0.197) (0.160) (0.190) (0.160)

Hightech �0.210⇤ 0.080
(0.124) (0.117)

R&D Spending 0.821⇤⇤⇤ 0.704⇤⇤⇤
(0.064) (0.060)

Constant �16.240⇤⇤⇤ �4.140⇤⇤ �12.650⇤⇤⇤ �2.285
(2.089) (1.882) (1.887) (1.700)

Observations 246 246 246 246
R2 0.730 0.841 0.784 0.869
Adjusted R2 0.723 0.836 0.778 0.864

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 8: Patent Quantity - Within Estimator

Dependent variable:
LN Patent Applications per 100.000 Inhabitants

(1) (2) (3) (4)

Single Bidding �0.028⇤⇤⇤ �0.029⇤⇤⇤
(0.010) (0.010)

EQI Corruption �0.037 �0.039
(0.030) (0.030)

GDP PPS 0.238 0.221 0.277⇤ 0.259⇤
(0.153) (0.154) (0.153) (0.154)

Unemployment �0.022 �0.020 �0.022 �0.020
(0.030) (0.030) (0.030) (0.030)

Population Density �1.531⇤⇤⇤ �1.438⇤⇤⇤ �1.578⇤⇤⇤ �1.488⇤⇤⇤
(0.300) (0.300) (0.301) (0.301)

Primary Sector �0.087⇤⇤⇤ �0.083⇤⇤⇤ �0.086⇤⇤⇤ �0.082⇤⇤⇤
(0.030) (0.030) (0.030) (0.030)

Tertiary Ed. 0.313⇤⇤⇤ 0.265⇤⇤⇤ 0.315⇤⇤⇤ 0.268⇤⇤⇤
(0.068) (0.069) (0.069) (0.070)

Hightech 0.128⇤⇤⇤ 0.124⇤⇤⇤
(0.037) (0.037)

R&D Spending 0.017 0.021
(0.027) (0.027)

Observations 1,722 1,722 1,722 1,722

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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7.3 Effect on Patent Quality
The previous section examined, whether corruption affects innovation per-
formance, as measured by the quantity of patent applications. However, the
number of patent applications alone is a rather insufficient proxy for the in-
novation performance of a region. To get a broader picture of this matter,
the quality dimension is also considered. In this section, I analyse the effect
of corruption on patent quality through regressions of the following form:

Qualityr = ↵ + �1Corruptr + �Xr + ✏r (7)

Qualityr = ↵ + �1Corruptr + �Xr + !Inputsr + ✏r (8)

Qualityr = ↵ + �1Corruptr + �Xr + !Inputsr + �2Patentsr + ✏r (9)

QualityMAi,t = ↵r +  t + �1CorruptMAr,t + �Xr,t + ✏r,t (10)

QualityMAr,t = ↵r + t+�1CorruptMAr,t+ �Xr,t+!Inputsr,t+ ✏r,t (11)

QualityMAr,t = ↵r+ t+�1CorruptMAr,t+�Xr,t+!Inputsr,t+�2Patentsr,t+✏r,t
(12)

To avoid redundancy, I will only describe the changes compared to the
previously reported regression formulae. QualityMAr,t denotes the average
patent quality of the top 10% highest-quality patents in a region and year.
Patent quality in general is measured by the OECD patent quality index as
described in more detail in the data section of this thesis. The variable is
z-score normalized to facilitate the coefficient interpretation. A third specifi-
cation for the between and within estimation is introduced, in which I control
for the number of patent applications per capita, Patentsr,t. This is done to
test whether a potential increase in patent quality is only indirectly induced
by an increased number of patent applications or whether corruption has a
significant effect on the quality of patents, even when the quantity is held
constant.

In the between estimation, Single Bidding has a highly significant nega-
tive effect on patent quality, even in the strictest specification in which the
quantity of patents is controlled for. For the EQI, the highly significant
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positive effect vanishes when the number of patents per capita is included
as an explanatory variable. The fixed effects regression shows quite a sim-
ilar picture. Single Bidding retains its significant negative effect, albeit to
a smaller degree. In the strictest between regression, a 1% increase of the
Single Bidding rate is associated with a decrease of patent quality of -0.150
standard deviations, and in the within estimation -0.063 standard deviations,
respectively. In the fixed effects model, the EQI Corruption Pillar does not
lose its significant positive effect when the quantity of patents is controlled
for. On the contrary, it even retains its effect size of 0.486. Interestingly, the
corruption proxies retain their sign, regardless of whether only the variation
between or within regions is considered. This is not the case for some of
the control variables. If we look at the population density, for example, the
estimated effect in the between estimation is positive, signalling that more
urban regions with higher population density produce higher-quality patents.
However, within a given region, an increasing population density is associ-
ated with a rather strong negative effect on the quality of patents, ceteris
paribus.
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Table 9: Patent Quality - Between Estimator

Dependent variable:
Avg. Patent Quality in 90th Percentile

(1) (2) (3) (4) (5) (6)

Single Bidding �0.207⇤⇤⇤ �0.168⇤⇤⇤ �0.150⇤⇤⇤
(0.061) (0.059) (0.054)

EQI Corruption 0.280⇤⇤⇤ 0.205⇤⇤⇤ 0.064
(0.058) (0.059) (0.061)

GDP PPS 0.534⇤⇤⇤ �0.305⇤ �0.416⇤⇤ 0.417⇤⇤⇤ �0.319⇤ �0.399⇤⇤
(0.141) (0.174) (0.161) (0.141) (0.173) (0.163)

Unemployment �0.129 �0.100 0.099 �0.083 �0.070 0.059
(0.079) (0.074) (0.075) (0.078) (0.075) (0.075)

Pop. Density 0.026 0.116⇤⇤⇤ 0.147⇤⇤⇤ 0.085⇤⇤ 0.149⇤⇤⇤ 0.159⇤⇤⇤
(0.039) (0.038) (0.035) (0.040) (0.038) (0.036)

Primary Sector �0.136⇤⇤ 0.005 0.072 �0.100 0.027 0.068
(0.063) (0.063) (0.059) (0.062) (0.063) (0.060)

Tertiary Ed. 0.221 0.137 0.134 0.024 �0.004 0.162
(0.144) (0.137) (0.127) (0.151) (0.150) (0.144)

Hightech �0.064 0.006 �0.008 �0.033
(0.107) (0.099) (0.110) (0.103)

R&D Spending 0.391⇤⇤⇤ 0.117⇤ 0.355⇤⇤⇤ 0.133⇤⇤
(0.055) (0.066) (0.057) (0.067)

Patent Quantity 0.334⇤⇤⇤ 0.316⇤⇤⇤
(0.052) (0.057)

Constant �5.351⇤⇤⇤ 0.520 1.904 �4.547⇤⇤⇤ 0.526 1.249
(1.520) (1.618) (1.509) (1.498) (1.594) (1.510)

Observations 246 246 246 246 246 246
R2 0.441 0.541 0.611 0.467 0.548 0.600
Adjusted R2 0.427 0.526 0.596 0.454 0.533 0.584

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 10: Patent Quality - Within Estimator

Dependent variable:
Avg. Patent Quality in 90th Percentile

(1) (2) (3) (4) (5) (6)

Single Bidding �0.067⇤⇤ �0.065⇤⇤ �0.063⇤
(0.033) (0.032) (0.033)

EQI Corruption 0.495⇤⇤⇤ 0.485⇤⇤⇤ 0.486⇤⇤⇤
(0.095) (0.096) (0.096)

GDP PPS 0.019 �0.067 �0.097 �0.073 �0.110 �0.144
(0.491) (0.495) (0.495) (0.487) (0.491) (0.491)

Unemployment �0.029 �0.026 �0.022 0.052 0.051 0.054
(0.095) (0.095) (0.095) (0.095) (0.095) (0.095)

Pop. Density �0.243 �0.379 �0.197 �1.083 �1.223 �1.022
(0.963) (0.966) (0.975) (0.957) (0.960) (0.969)

Primary Sector �0.001 �0.008 �0.001 0.025 0.017 0.025
(0.096) (0.096) (0.096) (0.095) (0.095) (0.096)

Tertiary Ed. �0.582⇤⇤⇤ �0.507⇤⇤ �0.542⇤⇤ �0.322 �0.243 �0.282
(0.220) (0.223) (0.225) (0.221) (0.225) (0.226)

Hightech �0.265⇤⇤ �0.271⇤⇤ �0.268⇤⇤ �0.274⇤⇤
(0.118) (0.118) (0.117) (0.117)

R&D Spending 0.112 0.110 0.053 0.051
(0.086) (0.086) (0.086) (0.086)

Patent Quantity 0.073 0.079
(0.054) (0.054)

Observations 1,722 1,722 1,722 1,722 1,722 1,722

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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7.4 Effect on Technological Complexity
So far, the effects of corruption on the quantity and quality of patents were
examined. However, the question remains whether this effect is uniform
across all technologies or whether the technological complexity of innovations
is affected as well. The regression specifications are identical to the ones used
in the previous subsection, with the only difference being that the dependent
variable is now the average technological complexity of the top 10% most
technologically complex patents, as measured through the structural diversity
of the respective technology. To facilitate the interpretation of results, the
variable was z-score normalized.

In the between estimation, I do not find any statistically significant results
of corruption on the technological complexity of a region, regardless of which
of the two proxies and which control variables are considered.

In the fixed effects model, however, Single Bidding has a highly signifi-
cant negative effect across all specifications. The EQI Corruption Pillar has
a positive estimated effect that is statistically significant at the 0.05 level
without the direct innovation inputs and the 0.1 level when direct innovation
inputs and the number of patent applications per capita are included in the
regression. In the model with all controls included, the estimated effect of
Single Bidding is -0.091, so an increase in the Single Bidding rate by 10% is
expected to lead to a decrease of the technological complexity of a region by
-0.91 standard deviations, ceteris paribus.

What strikes the eye is the exceptionally strong negative effect of popula-
tion density. Additional research that would, unfortunately, exceed the scope
of this thesis would be needed to explain this relationship in more detail.
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Table 11: Technological Complexity - Between Estimator

Dependent variable:
Avg. Technological Complexity in 90th Percentile

(1) (2) (3) (4) (5) (6)

Single Bidding 0.035 0.017 0.018
(0.084) (0.082) (0.082)

EQI Corruption 0.038 0.034 0.005
(0.080) (0.081) (0.090)

GDP PPS 0.547⇤⇤⇤ �0.474⇤⇤ �0.497⇤⇤ 0.516⇤⇤⇤ �0.480⇤⇤ �0.496⇤⇤
(0.190) (0.237) (0.239) (0.196) (0.238) (0.239)

Unemployment �0.119 �0.012 0.029 �0.089 0.011 0.038
(0.109) (0.103) (0.113) (0.109) (0.103) (0.109)

Pop. Density 0.002 0.086⇤ 0.093⇤ 0.011 0.091⇤ 0.093⇤
(0.053) (0.051) (0.052) (0.055) (0.053) (0.053)

Primary Sector �0.115 0.127 0.141 �0.106 0.135 0.143
(0.086) (0.086) (0.088) (0.087) (0.087) (0.088)

Tertiary Ed. 0.190 �0.086 �0.088 0.121 �0.144 �0.111
(0.199) (0.192) (0.192) (0.210) (0.206) (0.211)

Hightech 0.415⇤⇤⇤ 0.431⇤⇤⇤ 0.449⇤⇤⇤ 0.444⇤⇤⇤
(0.147) (0.148) (0.151) (0.151)

R&D Spending 0.419⇤⇤⇤ 0.364⇤⇤⇤ 0.406⇤⇤⇤ 0.361⇤⇤⇤
(0.076) (0.099) (0.078) (0.098)

Patent Quantity 0.067 0.064
(0.076) (0.084)

Constant �5.923⇤⇤⇤ 1.637 1.930 �5.416⇤⇤⇤ 1.875 2.022
(2.044) (2.188) (2.215) (2.085) (2.196) (2.206)

Observations 246 246 246 246 246 246
R2 0.177 0.317 0.319 0.177 0.317 0.319
Adjusted R2 0.156 0.293 0.293 0.156 0.294 0.293

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 12: Technological Complexity - Within Estimator

Dependent variable:
Avg. Technological Complexity in 90th Percentile

(1) (2) (3) (4) (5) (6)

Single Bidding �0.094⇤⇤⇤ �0.098⇤⇤⇤ �0.091⇤⇤⇤
(0.035) (0.035) (0.035)

EQI Corruption 0.199⇤ 0.176⇤ 0.180⇤
(0.104) (0.105) (0.104)

GDP PPS 0.999⇤ 0.834 0.705 1.028⇤ 0.892⇤ 0.753
(0.533) (0.537) (0.533) (0.534) (0.537) (0.533)

Unemployment �0.067 �0.053 �0.037 �0.021 �0.010 0.005
(0.103) (0.103) (0.102) (0.104) (0.104) (0.103)

Pop. Density �4.956⇤⇤⇤ �4.672⇤⇤⇤ �3.899⇤⇤⇤ �5.522⇤⇤⇤ �5.237⇤⇤⇤ �4.429⇤⇤⇤
(1.047) (1.048) (1.048) (1.049) (1.051) (1.051)

Primary Sector 0.185⇤ 0.197⇤ 0.228⇤⇤ 0.203⇤ 0.213⇤⇤ 0.245⇤⇤
(0.105) (0.104) (0.104) (0.105) (0.105) (0.104)

Tertiary Ed. 0.256 0.118 �0.033 0.406⇤ 0.267 0.110
(0.239) (0.242) (0.242) (0.242) (0.246) (0.245)

Hightech 0.312⇤⇤ 0.286⇤⇤ 0.301⇤⇤ 0.275⇤⇤
(0.128) (0.127) (0.128) (0.127)

R&D Spending 0.191⇤⇤ 0.182⇤⇤ 0.168⇤ 0.159⇤
(0.093) (0.092) (0.094) (0.093)

Patent Quantity 0.312⇤⇤⇤ 0.318⇤⇤⇤
(0.058) (0.058)

Observations 1,722 1,722 1,722 1,722 1,722 1,722

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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7.5 Effect on Technological Composition
The final research question that is dealt with in this thesis is whether the
effect of corruption is homogeneous across industries or not. To analyse this,
patents are classified according to the WIPO IPC - Technology Concordance
Table into five sectors, namely Electrical Engineering, Instruments, Chem-
istry, Mechanical Engineering and Other Fields. Regressions of the following
form were constructed to estimate the effect of corruption on the share of
patents belonging to each of these sectors:

Sectorr = ↵ + �1Corruptr + �Xr + �2Inputsr + �3Patentsr + ✏r (13)

Sectorr,t = ↵r+ t+�1CorruptMAr,t+�Xr,t+�2Inputsr,t+�3Patentsr,t+✏r,t
(14)

where Sector is a matrix containing the share of patent applications be-
longing to each of the five sectors in relation to the total patent applications
in a region. Besides that, the models are identical to the previously defined,
fully specified regression models. Figure 11 depicts the point estimations
and the 0.95 confidence intervals of the coefficients of the corruption prox-
ies. Barely any statistically significant effects could be identified, with one
exception. In the fixed effects model, Single Bidding has a significant pos-
itive effect on the share of patent applications belonging to the class Other
Fields, which consists of the fields Furniture and Games, Other Consumer
Goods, and Civil Engineering. These fields are associated with comparably
low levels of technological complexity.
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Figure 11: Effect of Corruption on Technological Composition
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8 Discussion
To begin the discussion, I want to recap the main initial research question.
Does corruption have a significant effect on innovation performance, and
if so, is this effect positive or negative? At least for European regions in
recent years, I found clear evidence supporting the argument that corruption
sands the wheels of innovation. To extend the existing literature and fill
prior research gaps, I did not only consider the commonly used number of
patent applications as a measurement of innovation performance but also
the respective quality of patents, as well as the technological complexity and
technological composition of regions. Furthermore, I decided to apply two
different model types, namely the between and within estimators. By doing
so, I was able to isolate the two distinct dimensions of variation in the data,
namely the variation between regions and the variation within regions over
time. This allows for a more comprehensive picture while the interpretability
stays intact, which can be seen as a clear advantage over limiting the analysis
to either model type or applying an estimator that mixes between and within
region effects [38].

Unsurprisingly, I found evidence that in Europe, corruption negatively af-
fects innovation performance in terms of the number of patent applications.
This aligns with the findings of Rodríguez-Pose and Di Cataldo (2015) [52].
However, my final research approach differed quite substantially, which shed
light on some previously unconsidered issues. An especially interesting ob-
servation was that in the between estimation, Single Bidding does not have a
statistically significant effect on the number of patent applications per capita,
but the EQI does, while in the within estimation, this is reversed. Of course,
this fact alone does not allow for any causal conclusions. However, one possi-
ble interpretation suggests itself. One of the biggest advantages of the Single
Bidding indicator is that it is not based on perceptions and therefore does
not suffer from stickiness or the problem that regions that performed eco-
nomically well in the past are generally perceived as less corrupt [24]. On the
other hand, the comparability between countries might be somewhat limited
because even though the indicator is purely based on tendering contracts that
appear in the TED database and should therefore be comparable, there is
large heterogeneity between countries in terms of data quality and the overall
number of contracts appearing in the TED [23]. The exceptionally low share
of Single Bidding contracts in Greece, for example, indicates very high control
of corruption, which does not align with other established indicators [14]. On
the other hand, the perception based EQI may be less suitable for time-series
analyses because of the persistence of perceptions. Future research aimed at
analysing these hypotheses would be needed for validation and to support an
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informed, context-dependent choice of an appropriate indicator.
Besides confirming the negative effect of corruption on the number of

patent applications, I could also find strong evidence that corruption has a
negative effect on the quality of patents. This finding is consistent in the
between and within estimation and broadly robust to the inclusion of the
number of patents per capita as a control variable. This means that corrup-
tion affects patent quality directly and not only in a probabilistic manner
via the number of patent applications. Another interesting observation is
that it makes a big difference in patent quality and technological complexity
whether the overall average or the average of the highest quality and highest
complexity patents is considered. Depending on the context and research
question, both approaches can be valid, with the latter being better suited
to assessing a region’s innovative capacity.

A further contribution of this thesis is that it establishes a relationship
that was not analysed in the literature before, namely the effect of corruption
on the technological complexity that a region can achieve. To do so, I used
a recently developed measurement for technological complexity, namely the
structural diversity of a technology’s components [10]. While the evidence is
not as robust as the measured effect on the quantity and quality of patents,
the fixed effect models do suggest a negative relationship. Similar to the
quality of patents, but to a greater extent, the difference between the overall
average technological complexity and the average technological complexity in
the 10% most complex patents is substantial. A counterintuitive observation
is the strong negative effect of population density and the positive effect of
the primary sector share within regions. Further research would be needed
to assess this relationship in detail, but it seems that the urbanization of
regions might lead to a decrease in technological complexity.

Given that corruption is associated with more complex innovation activ-
ities, the question arises of whether the level of corruption also affects the
technological composition of a region. A potential hypothesis would be that
more corrupt regions tend to engage in the research of less complex tech-
nologies because the more complex a technology is, the more actors would
be involved, which gives more room for rent extraction and obstructive be-
haviour.

Overall, I did not find much supporting evidence for this claim, with
one exception. In the fixed effects model, an increase in Single Bidding is
associated with an increase in the share of patent applications belonging to
the Other Fields class, which consists purely of low complexity technologies.
Given that this result is not consistent in the between estimation and the
within estimation with the EQI as corruption proxy, the robustness is severely
limited, leaving us with a somewhat interesting result, but one that does not
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allow for causal inference.
The results clearly show that corruption negatively affects various facets

of innovation performance in European regions. While this answers the main
questions of this thesis, the question remains through which specific mecha-
nisms and channels this relationship occurs. Coming back to the concept of
innovation effectiveness and efficiency, there are two main channels through
which the innovation performance of a region can be affected. The first is
a region’s capacity to attract and retain innovation generators [9]. Prior
studies have shown that corruption is one of the main factors driving brain
drain4 [19, 49]. This is especially true for Central and Eastern European
countries. Iacob (2018), for example, identifies corruption as the main push
factor of Romanian skilled migration, even more relevant than salary levels,
the healthcare system, professional opportunities, the educational system,
and the quality of life [33]. With the east expansion of the EU and the
accompanying opening of borders and free movement of labour, this trend
has been accelerated significantly within Europe, with increasing brain drain
from Central and Eastern to Western Europe [35]. Especially for innovators,
the corruption induced reasons to leave a region and move to one with higher
control of corruption are numerous. Rent-extraction, lacking protection of
intellectual property, unreliable governmental institutions and a generally
low level of trust amongst agents are all strong disincentives to reside and
innovate in a corrupt region. Not only do these factors deter innovation gen-
erators from settling and remaining in a region, but they also impede cooper-
ation, lead to less efficient processes of existing innovators and disincentivize
companies and individuals to invest in innovation and other complex eco-
nomic activities [5]. In such a frustrating environment for innovation, high
potentials may even conclude that participating in corrupt rent extraction is
more attractive and profitable than pursuing a career in research, leading to
a self-reinforcing deterioration of the situation. Although all of these mech-
anisms are quite intuitive and based on the literature, I believe that there
is much room for future research to empirically examine the specific mecha-
nisms through which corruption impedes innovation performance to provide
an evidence-based foundation for effective anti-corruption policy.

As for the implications of these findings for policymaking, the results
mainly contribute to the existing strain in the literature that argues for the
importance of anti-corruption measures in creating an ideal environment for
innovation [52, 54]. While R&D expenditure is certainly an important driver
of innovation, it is far from being the only one, as was shown in this thesis
once again. To achieve the goal set by the European Commission to bring

4the emigration of highly educated citizens
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Europe back to the forefront of innovation, a holistic approach will be needed
that recognizes the role of corruption [18].

Of course, the results and conclusions derived in this study cannot be in-
terpreted as depicting the absolute and final truth. Limitations arise mainly
due to the data. First of all, the quantity of available data leaves room
for improvement. I had to restrict my analysis to the years 2011 to 2017,
which is not a long time period with regard to corruption and innovation
performance, and even within this time period, there was substantial incom-
pleteness. Missing data, as well as the harmonization of data, were issues
that had to be dealt with, and even though the data processing was done
with great care, a certain level of dilution of information cannot be avoided
when imputation techniques are applied. Furthermore, there is no way to
directly measure corruption and innovation performance. Hence, being tied
to the use of proxies, the validity of the results may suffer. Both used corrup-
tion proxies have their own deficiencies. While Single Bidding is a somewhat
indirect and noisy proxy for corruption, the EQI is only available for four
sample years and has the same problems as other perception-based indica-
tors, such as stickiness of perceptions. Nonetheless, the use of two separate
proxies based on very different concepts helps increase the study’s overall va-
lidity because even if neither of the proxies measures corruption perfectly, the
detection of relatively consistent effects increases confidence that the results
are meaningful.

Even in light of the aforementioned limitations, my findings add to a solid
body of existing literature and extend previous studies in some key dimen-
sions. Especially in the field of social sciences, one can never realistically
claim to have found the truth, but the aim is to add convincing puzzle pieces
to the whole picture to at least approximate the truth and come closer to it
with every additional piece of literature.

9 Conclusion
Despite significant efforts and investments, the EU keeps falling behind in
the global landscape of innovation. While many reasons for this are well-
known, one aspect does not get broad attention, and that is the role of
corruption. Different corruption proxies signal that, on average, European
regions have become significantly more corrupt in the past decade. This is
alarming in various ways, one of which is the negative effect of corruption on
innovation performance. The results presented in this thesis have shown that
corruption, at least in Europe, significantly sands the wheels of innovation.
Corrupt regions produce fewer patents per capita, and the quality of patents
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is inferior. Furthermore, high levels of corruption are associated with lower
technological complexity, which can lead to slower economic growth [45].

Some clear implications for policymaking can be derived. If Europe wants
to regain its position as a key player in innovation, the current decline in con-
trol of corruption cannot be ignored and needs to be stopped. To reach this
ambitious goal, we must acknowledge the immense heterogeneity in Europe
that does not only exist between countries but also between sub-national
regions and markets. Depending on the structure of the market, a differ-
entiated approach to anti-corruption policy might be needed to maximise
its effectiveness. In countries with highly centralized procurement markets,
for example, it might be problematic when the central government is fully
in charge of corruption control [57]. Therefore, regional decision-makers are
also called upon to contribute to a less corrupt and more innovative Europe.
Time will tell whether the EU will metaphorically succeed in rising like a
phoenix from the ashes of the Covid-19 pandemic and regain its position as
an innovation leader. A key determining factor will be whether policymakers
acknowledge the importance of rigorous anti-corruption measures in creating
an environment in which innovation can thrive and develop unhindered.
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A Summary Statistics

Table 13: Summary Statistics - Patent Variables

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max

N Electrical Eng 51.40 112.96 0.00 2.50 42.04 947.56
N Instruments 34.04 73.14 0.00 2.08 33.20 1,033.42
N Chemistry 48.25 87.76 0.00 4.30 52.80 741.00
N Mechanical Eng 70.04 126.74 0.00 5.70 78.18 1,284.25
N Other Sector 21.44 36.18 0.00 2.00 24.09 251.46
N No Sector 0.18 1.17 0.00 0.00 0.00 38.00
N Total Patents 225.35 394.94 0.17 20.21 263.30 3,477.22
Mean Quality 0.28 0.06 0.06 0.25 0.31 0.59
Max Quality 0.57 0.16 0.06 0.47 0.69 0.93
Top 10% Quality 0.47 0.11 0.06 0.42 0.53 0.81
90th Pctl Quality 0.41 0.09 0.06 0.37 0.46 0.81
Mean Complex 11.60 0.36 10.04 11.39 11.82 13.29
Max Complex 13.23 0.59 10.10 12.97 13.75 13.95
Top 10% Complex 12.73 0.38 10.10 12.59 12.95 13.95
90th Pctl Complex 12.54 0.37 10.10 12.36 12.75 13.76

Table 14: Summary Statistics - Corruption Proxies

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max

Single Bid 16.37 14.29 0.00 5.63 23.48 100.00
No Call 25.61 24.25 0.00 6.78 37.59 100.00
Non Open 7.12 10.67 0.00 0.28 8.92 100.00
Tax Haven 2.73 11.90 0.00 0.00 0.00 100.00
EQI 55.82 19.78 0.00 41.09 71.10 100.00
EQI Corrupt 56.96 19.89 0.00 39.77 71.52 100.00
EQI Impart. 59.45 18.05 0.00 45.54 73.19 100.00
EQI Quality 58.88 18.45 0.00 47.01 72.89 100.00
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Table 15: Summary Statistics - Control Variables

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max

GDP PPS 27,010.83 12,920.43 7,400 19,800 31,700 187,300
Unemployment 9.12 6.22 1.70 4.80 10.80 36.10
Pop. Density 480.47 1,266.60 3.30 76.15 320.35 11,357.10
Primary Sector 5.74 7.04 0.20 1.70 6.85 52.50
Tertiary Ed. 28.69 9.68 9.90 21.55 34.40 74.70
Hightech 3.44 1.87 0.60 2.10 4.25 11.00
R&D Spending 515.77 584.32 4.20 124.55 656.25 3,884.30
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B Correlations and Maps of Control Variables

Figure 12: Correlation Matrix of Control Variables
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Figure 13: Map of GDP

Figure 14: Map of Unemployment
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Figure 15: Map of Population Density

Figure 16: Map of Primary Sector Employment
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Figure 17: Map of Tertiary Education Rate

Figure 18: Map of Hightech Employment
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Figure 19: Map of R&D Expenditure
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